适应非洲猪瘟病毒增殖的传代细胞系研究进展Research Advances in Continuous Cell Lines for ASFV Proliferation
路皓东,左媛媛,戈胜强,韩乃君,王振忠,张永强,吴晓东,蔡玉梅,王志亮
摘要(Abstract):
非洲猪瘟病毒(African swine fever virus,ASFV)疫苗研发以及深入研究的一个很大障碍在于缺少可稳定有效增殖ASFV的传代细胞系。尽管如此,目前可增殖ASFV的传代细胞系研究取得了一定的进展,本文对应用于ASFV增殖的传代细胞系的种类、优缺点以及在疫苗研发的应用现状进行简要综述,以期为可增殖ASFV的传代细胞系研究及ASFV疫苗研制提供参考。
关键词(KeyWords): 非洲猪瘟病毒;传代细胞系;病毒增殖
基金项目(Foundation): 山东省重大科技创新工程项目“针对超级细菌的兽用噬菌体新兽药和新添加剂研发应用”(项目号:2019YFA0904000);; 山东省重大科技创新项目,题目:非洲猪瘟防控关键技术研究与应用(项目号:2020CXGC010801-04);; 江苏省重点研发计划(现代农业)重点项目,题目:非洲猪瘟新型疫苗创制及病毒早期侦检与阻断技术研发(项目号:BE2020398)~~
作者(Author): 路皓东,左媛媛,戈胜强,韩乃君,王振忠,张永强,吴晓东,蔡玉梅,王志亮
DOI: 10.13242/j.cnki.bingduxuebao.004353
参考文献(References):
- [1] Pereira De Oliveira R, Hutet E, Duhayon M, Guionnet J-M, Paboeuf F, Vial L, Le Potier M-F. Successful infection of domestic pigs by ingestion of the European soft tick o. erraticus that fed on african swine fever virus infected pig[J/OL]. Viruses, 2020, 12(3):300. DOI:10.3390/v12030300.
- [2] Ren M, Mei H, Zhou M, Fu Z F, Han H, Bi D, Peng F, Zhao L. Development of a super-sensitive diagnostic method for african swine fever using CRISPR techniques[J/OL]. Virol Sin, 2021, 36(2):220-230. DOI:10.1007/s12250-020-00323-1.
- [3] Penrith M. African swine fever:transboundary diseases[J/OL]. Onderstepoort J Vet Res, 2010, 76(1):123-125. DOI:10.4102/ojvr.v76i1.70.
- [4] Eustace M R. On a form of swine fever occurring in british east africa(Kenya Colony)[J/OL]. J Comp Pathol Ther, 1921, 34:159-191. DOI:10.1016/S0368-1742(21)80031-4.
- [5] Zakaryan H, Revilla Y. African swine fever virus:current state and future perspectives in vaccine and antiviral research[J/OL]. Vet Microbiol, 2016, 185:15-19. DOI:10.1016/j.vetmic.2016.01.016.
- [6] De L P, Bustos M J, Carrascosa A L. Laboratory methods to study african swine fever virus[J/OL].Virus Res, 2013, 173(1):168-179. DOI:10.1016/j.virusres.2012.09.013.
- [7] Krug P W, Holinka L G, O′Donnell V, Reese B,Sanford B, Fernandez-Sainz I, Gladue D P, Arzt J,Rodriguez L, Risatti G R. The progressive adaptation of a georgian isolate of african swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome[J/OL]. J Virol, 2015, 89(4):2324-2332. DOI:10.1128/JVI.03250-14.
- [8] Masujin K, Kitamura T, Kameyama K-i, Okadera K,Nishi T, Takenouchi T, Kitani H, Kokuho T. An immortalized porcine macrophage cell line competent for the isolation of african swine fever virus[J/OL]. Sci Rep, 2021, 11(1):1-11. DOI:10.1038/s41598-021-84237-2.
- [9] Borca M V, Ramirez-Medina E, Silva E, Vuono E,Rai A, Pruitt S, Holinka L G, Velazquez-Salinas L,Zhu J, Gladue D P. Development of a highly effective african swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain[J/OL]. J Virol, 2020, 94(7):e02017-02019. DOI:10.1101/861666.
- [10]Balysheva V, Prudnikova E Y, Galnbek T, Balyshev V. Immunological properties of attenuated variants of african swine fever virus isolated in the Russian federation[J/OL]. Russ Agric Sci, 2015, 41(2):178-182. DOI:10.3103/S1068367415020056.
- [11]Sereda A D, Balyshev V M, Kazakova A S, Imatdinov A R, Kolbasov D V. Protective properties of attenuated strains of african swine fever virus belonging to seroimmunotypes I–VIII[J/OL]. Pathogens, 2020, 9(4):274. DOI:10.3390/pathogens9040274.
- [12]Hemmink J D, Abkallo H M, Henson S P, Khazalwa E M, Oduor B, Lacasta A, Okoth E, Fuchs W, Bishop R P, Steinaa L. The african swine fever isolate ASFVkenya-1033-IX is highly virulent and stable after growth in the wild boar cell line WSL[J/OL]. bioRxiv, 2021:472778. DOI:10.1101/2021.12.15.472778.
- [13]Abkallo H M, Svitek N, Oduor B, Awino E, Henson S P, Oyola S O, Mwalimu S, Assad-Garcia N, Fuchs W, Vashee S. Rapid CRISPR/Cas9 editing of genotype IX African swine fever virus circulating in eastern and central africa[J/OL]. Front Genet 2021:1613. DOI:10.3389/fgene.2021.733674.
- [14]Portugal R, Goatley L C, Husmann R, Zuckermann F A, Dixon L K. A porcine macrophage cell line that supports high levels of replication of OURT88/3, an attenuated strain of african swine fever virus[J/OL].Emerging Microbes Infect, 2020, 9(1):1245-1253.DOI:10.1080/22221751.2020.1772675.
- [15]Zsak L, Lu Z, Burrage T, Neilan J, Kutish G, Moore D, Rock D. African swine fever virus multigene family360 and 530 genes are novel macrophage host range determinants[J/OL]. J Virol, 2001, 75(7):3066-3076. DOI:10.1128/JVI.75.7.3066-3076.2001.
- [16]Mazloum A, Igolkin A, Zinyakov N, Van Schalkwyk A, Vlasova N. Changes in the genome of african swine fever virus(asfarviridae:asfivirus:african swine fever virus)associated with adaptation to reproduction in continuous cell culture[J/OL]. Vopr Virusol, 2021, 66(3):211-216. DOI:10.36233/0507-4088-50.
- [17]Monteagudo P L, Lacasta A, López E, Bosch L,Collado J, Pina-Pedrero S, Correa-Fiz F, Accensi F,Navas M J, Vidal E. BA71ΔCD2:a new recombinant live attenuated african swine fever virus with crossprotective capabilities[J/OL]. J Virol, 2017, 91(21):e01058-01017. DOI:10.1128/JVI.01058-17.
- [18]Gallardo C, Sánchez E G, Pérez-Nú?ez D, Nogal M,de León P, CarrascosaáL, Nieto R, Soler A, Arias M L, Revilla Y. African swine fever virus(ASFV)protection mediated by NH/P68 and NH/P68recombinant live-attenuated viruses[J/OL]. Vaccines,2018, 36(19):2694-2704. DOI:10.1016/j.vaccine.2018.03.040.
- [19]Alcaraz C, Brun A, Ruiz-Gonzalvo F, Escribano J. Cell culture propagation modifies the african swine fever virus replication phenotype in macrophages and generates viral subpopulations differing in protein p54[J/OL]. Virus Res, 1992, 23(1-2):173-182. DOI:10.1016/0168-1702(92)90076-L.
- [20]Do D T, Nguyen T T. Development of high-growth african swine fever virus(ASFV)in MA-104 cells[J/OL]. Res Sq, 2021. DOI:10.21203/rs.3.rs-511079/v1.
- [21]Wang T, Wang L, Han Y, Pan L, Yang J, Sun M,Zhou P, Sun Y, Bi Y, Qiu H J. Adaptation of african swine fever virus to HEK293T cells[J/OL].Transbound Emerg Dis, 2021, 68(5):2853-2866.DOI:10.1111/tbed.14242.
- [22]Plowright W, Brown F, Parker J. Evidence for the type of nucleic acid in african swine fever virus[J]. Arch Gesamte Virusforsch, 1966, 19(3):289-304.
- [23]Lithgow P, Takamatsu H, Werling D, Dixon L,Chapman D. Correlation of cell surface marker expression with african swine fever virus infection[J/OL]. Vet Microbiol, 2014, 168(2-4):413-419. DOI:10.1016/j.vetmic.2013.12.001.
- [24]Malmquist W. Propagation, modification and hemadsorption of african swine fever virus in cell cultures[J]. Am J Vet Res, 1962, 23:241-247.
- [25]Todaro G J, Benveniste R E, Lieber M M, Sherr C J.Characterization of a type c virus released from the porcine cell line PK(15)[J/OL]. Virol, 1974, 58(1):65-74. DOI:10.1016/0042-6822(74)90141-X.
- [26]Shimizu Y, Furuuchi S, Hayashi S, Kumagai T,Sasahara J. Porcine kidney cell line persistently contaminated with avirulent swine fever virus[J/OL]. J Gen Virol, 1969, 4(4):625-628. DOI:10.1099/0022-1317-4-4-625.
- [27]Hess W, May H, Patty R. Serial cultures of lamb testicular cells and their use in virus studies[J]. Am J Vet Res, 1963, 24:59-64.
- [28]Stone S, Hess W. Separation of virus and soluble noninfectious antigens in african swine fever virus by isoelectric precipitation[J/OL]. Virol, 1965, 26(4):622-629. DOI:10.1016/0042-6822(65)90325-9.
- [29]KinoshitaI Y, Fukase M, Takenaka M, Nakada M,Miyauchi A, Fujita T. Calcitonin-responsive clonal cell line from porcine kidney(PK(15))in serum-free medium[J/OL]. Endocrinol Jpn, 1985, 32(6):819-828. DOI:10.1507/endocrj1954.32.819.
- [30]Dulac G C, Afshar A. Porcine circovirus antigens in PK-15 cell line(ATCC CCL-33)and evidence of antibodies to circovirus in canadian pigs[J]. Can J Vet Res, 1989,53(4):431.
- [31]Wei Z Y, Cui B A, Huang K H, Jin X X, Wang X B,Hu G Z, Yang M F, Zhang S M. The replication of porcine parvovirus in PK-15 cell cultures[J]. Chin J Vet Sci, 2005, 5:453.
- [32]Dardiri A, Bachrach H, Heller E. Inhibition by rifampin of african swine fever virus replication in tissue culture[J/OL]. Infect Immun, 1971, 4(1):34-36. DOI:10.1128/IAI.4.1.34-36.1971.
- [33]Heuschele W, Hess W. Diagnosis of african swine fever by immunofluorescence[J/OL]. Trop Anim Health,1973, 5(3):181-186. DOI:10.1007/BF02251387.
- [34]Yang B, Zhang D, Shi X, Shen C, Hao Y, Zhang T,Yang J, Yuan X, Chen X, Zhao D. Construction,identification and analysis of the interaction network of african swine fever virus MGF360-9L with host proteins[J/OL]. Viruses, 2021, 13(9):1804. DOI:10.3390/v13091804.
- [35]Takenouchi T, Kitani H, Suzuki S, Nakai M,Fuchimoto D-i, Tsukimoto M, Shinkai H, Sato M,Uenishi H. Immortalization and characterization of porcine macrophages that had been transduced with lentiviral vectors encoding the SV40 large T antigen and porcine telomerase reverse transcriptase[J/OL]. Front Vet Sci, 2017, 4:132. DOI:10.3389/fvets.2017.00132.
- [36]Swaney L M. A continuous bovine kidney cell line for routine assays of foot-and-mouth disease virus[J/OL].Vet Microbiol, 1988, 18(1):1-14. DOI:10.1016/0378-1135(88)90111-3.
- [37]LaRocco M, Krug P W, Kramer E, Ahmed Z, Pacheco J M, Duque H, Baxt B, Rodriguez L L. A continuous bovine kidney cell line constitutively expressing bovineαvβ6 integrin has increased susceptibility to foot-andmouth disease virus[J/OL]. J Clin Microbiol, 2013, 51(6):1714-1720. DOI:10.1128/JCM.03220-14.
- [38]Borca M, Rai A, Ramirez-Medina E, Silva E,Velazquez-Salinas L, Vuono E, Pruitt S, Espinoza N,Gladue D. A cell culture-adapted vaccine virus against the current african swine fever virus pandemic strain[J/OL]. J Virol, 2021, 95(14):e00123-00121. DOI:10.1128/JVI.00123-21.
- [39]Balysheva V, Prudnikova E Y, Galnbek T, Balyshev V. Continuous cell subline A4C2/9K and its application to the african swine fever virus study[DB/OL]. Vopr Virusol, 2015, 60(2):43-47. https://pubmed. ncbi.nlm.nih.gov/26182658/.
- [40]Balysheva V, Prudnikova E, Galnbek T, Balyshev V.Immunological properties of attenuated variants of african swine fever virus isolated in the russian federation[J/OL]. Russ Agric Sci, 2015, 41(2):178-179. DOI:10.3103/s1068367415020056.
- [41]Balyshev V, Vlasov M, Imatdinov A, Titov I,Morgunov S Y, Malogolovkin A. Biological properties and molecular-genetic characteristics of african swine fever virus isolated in various regions of Russia in 2016–2017[J/OL]. Russ Agric Sci, 2018, 44(5):469-473.DOI:10.3103/S106836741805004X.
- [42]Sereda A, Imatdinov A, Makarov V V. The haemadsorption at african swine fever(review)[J/OL].S-kh Biol, 2016, 51:763-774. DOI:10.15389/agrobiology.2016.6.763eng.
- [43]Shubina N, Kolontsov A, Malakhova M, Makarov V.Cell-to-cell interactions in cultures of swine bone marrow cells and CPK-66b cells infected with african swine fever virus[J/OL]. Bull Exp Biol Med, 1996, 122(4):1014-1020. DOI:10.1007/BF02447024.
- [44]Vlasova N N, Balyshev V M, Kazakova A S.Perspective of using the recombinant DNA-technology to control the spread of the african swine fever[J/OL].Procedia Vaccinol, 2011, 4:92-99. DOI:10.1016/j.provac.2011.07.013.
- [45]Hernaez B, Alonso C. Dynamin-and clathrin-dependent endocytosis in african swine fever virus entry[J/OL]. J Virol, 2010, 84(4):2100-2109. DOI:10.1128/JVI.01557-09.
- [46]Carrascosa A L, Bustos M J, de Leon P. Methods for growing and titrating african swine fever virus:field and laboratory samples[J/OL]. Curr Protoc Cell Biol,2011, 53(1):26.14. 21-26.14. 25. DOI:10.1002/0471143030.cb2614s53.
- [47]Portugal R, Martins C, Keil G M. Novel approach for the generation of recombinant african swine fever virus from a field isolate using GFP expression and 5-bromo-2′-deoxyuridine selection[J/OL]. J Virol Methods,2012, 183(1):86-89. DOI:10.1016/j.jviromet.2012.03.030.
- [48]Sánchez E G, Riera E, Nogal M, Gallardo C,Fernández P, Bello R, López J A, Chitko C G, Richt J A, Revilla Y. Phenotyping and susceptibility of established porcine cells lines to african swine fever virus infection and viral production[J/OL]. Sci Rep, 2017, 7(1):1-13. DOI:10.1038/s41598-017-09948-x.
- [49]Hübner A, Petersen B, Keil G M, Niemann H,Mettenleiter T C, Fuchs W. Efficient inhibition of african swine fever virus replication by CRISPR/Cas9targeting of the viral p30 gene(CP204L)[J/OL]. Sci Rep, 2018, 8(1):1-7. DOI:10.1038/s41598-018-19626-1.
- [50]Calzada-Nova G, Husmann R J, Schnitzlein W M,Zuckermann F A. Effect of the host cell line on the vaccine efficacy of an attenuated porcine reproductive and respiratory syndrome virus[J/OL]. Vet Immunol Immunopathol, 2012, 148(1-2):116-125. DOI:10.1016/j.vetimm.2012.05.008.
- [51]Binjawadagi B, Lakshmanappa Y S, Longchao Z,Dhakal S, Hiremath J, Ouyang K, Shyu D L, Arcos J,Pengcheng S, Gilbertie A. Development of a porcine reproductive and respiratory syndrome virus-like-particlebased vaccine and evaluation of its immunogenicity in pigs[J/OL]. Arch Virol, 2016, 161(6):1579-1589.DOI:10.1007/s00705-016-2812-0.
- [52]Barrett P N, Mundt W, Kistner O, Howard M K. Vero cell platform in vaccine production:moving towards cell culture-based viral vaccines[J/OL]. Expert Rev Vaccines, 2009, 8(5):607-618. DOI:10.1586/erv.09.19.
- [53]Hess W R. African swine fever virus[J]. African Swine Fever Virus, 1971:1-33.
- [54]Enjuanes L, Carrascosa A, Moreno M, Vinuela E.Titration of african swine fever(ASF)virus[J/OL]. J Gen Virol, 1976, 32(3):471-477. DOI:10.1099/0022-1317-32-3-471.
- [55]Alejo A, Matamoros T, Guerra M, Andrés G. A proteomic atlas of the african swine fever virus particle[J/OL]. J Virol 2018, 92(23):e01293-01218. DOI:10.1128/JVI.01293-18.
- [56]Cackett G, Matelska D, Sykora M, Portugal R,Malecki M, B?hler J, Dixon L, Werner F. The african swine fever virus transcriptome[J/OL]. J Virol, 2020,94(9):e00119-00120. DOI:10.1128/JVI.00119-20.
- [57]Matamoros T, Alejo A, Rodríguez J M, Hernáez B,Guerra M, Fraile R A, Andrés G. African swine fever virus protein pE199L mediates virus entry by enabling membrane fusion and core penetration[J/OL]. MBio,2020, 11(4):e00789-00720. DOI:10.1128/mBio.00789-20.
- [58]Nogal M L, Gonzal'ez G, Rodr?g'uez C, Cubelos B,Carrascosa A L, Salas M L, Revilla Y. African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells[J/OL]. J Virol, 2001, 75(6):2535-2543. DOI:10.1128/JVI.75.6.2535-2543.2001.
- [59]Sonee M, Barrón E, Yarber F A, Hamm S F. Taxol inhibits endosomal-lysosomal membrane trafficking at two distinct steps in CV-1 cells[J/OL]. Am J Physiol Cell Physiol, 1998, 275(6):C1630-C1639. DOI:10.1152/ajpcell.1998.275.6.C1630
- [60]Ruiz G F, Carnero M, Bruyel V. Immunological responses of pigs to partially attenuated african swine fever virus and their resistance to virulent homologous and heterologous viruses[J]. Proc EUR, 1983, 8466:2066-2216.
- [61]Lacasta A, Monteagudo P L, Jiménez-Maríná,Accensi F, Ballester M, Argilaguet J, Galindo-Cardiel I, Segalés J, Salas M L, Domínguez J. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection[J/OL]. Vet Res, 2015, 46(1):1-16. DOI:10.1186/s13567-015-0275-z.
- [62]Mazloum A, Zinyakov N G, Pershin A S, Zhukov I Y,Vlasova N. Analysis of changes in african swine fever virus genetic structure and biological properties during adaptation to continuous cell culture[J/OL]. Vet Sci,2018,(4). DOI:10.29326/2304-196X-2018-4-27-21-25.
- [63]Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants[J/OL]. Cell, 1981,23(1):175-182. DOI:10.1016/0092-8674(81)90282-8.
- [64]Carrascosa A, Bustos M, Galindo I, Vinuela E. Virusspecific cell receptors are necessary, but not sufficient,to confer cell susceptibility to african swine fever virus[J/OL]. Arch Virol, 1999, 144(7):1309-1321. DOI:10.1007/s007050050589.
- [65]Hurtado C, Granja A G, Bustos M J, Nogal M L, de Buitrago G G, de Yébenes V G, Salas M L, Revilla Y,Carrascosa A L. The c-type lectin homologue gene(EP153R)of african swine fever virus inhibits apoptosis both in virus infection and in heterologous expression[J/OL]. Virol, 2004, 326(1):160-170. DOI:10.1016/j.virol.2004.05.019.
- [66]Hurtado C, Bustos M J, Carrascosa A L. The use of COS-1 cells for studies of field and laboratory African swine fever virus samples[J/OL]. J Virol Methods,2010, 164(1-2):131-134. DOI:10.1016/j.jviromet.2009.11.030.
- [67]Whitaker A, Hayward C. The characterization of three monkey kidney cell lines[J]. Dev Biol Stand, 1985,60:125-131.
- [68]Rai A, Pruitt S, Ramirez M E, Vuono E A, Silva E,Velazquez S L, Carrillo C, Borca M V, Gladue D P.Identification of a continuously stable and commercially available cell line for the identification of infectious african swine fever virus in clinical samples[J/OL].Viruses, 2020, 12(8):820. DOI:10.3390/v12080820.
- [69]Oh T, Do D T, Vo H V, Kwon H, Lee S C, Kim M H, Nguyen D T T, Le Q T V, Tran T M, Nguyen T T. The isolation and replication of African swine fever virus in primary renal-derived swine macrophages[J].Front Vet Sci, 2021, 8:645-456. DOI:10.3389/fvets.2021.645456.
- [70]Meloni D, Franzoni G, Oggiano A. Cell Lines for the Development of african Swine Fever Virus Vaccine Candidates:An Update[J/OL]. Vaccines, 2022, 10(5):707. DOI:10.3390/vaccines10050707.
- [71]Kim H, Kwang J, Yoon I, Joo H, Frey M. Enhanced replication of porcine reproductive and respiratory syndrome(PRRS)virus in a homogeneous subpopulation of MA-104 cell line[J/OL]. Arch Virol,1993, 133(3):477-483. DOI:10.1007/BF01313785.
- [72]Wo?niakowski G, Mazur P N, Walczak M, Juszkiewicz M, Frant M, Niemczuk K. Attempts at the development of a recombinant african swine fever virus strain with abrogated, and gene structure using the CRISPR/Cas9 system[J/OL]. J Vet Res, 2020, 64(2):197-205. DOI:10.2478/jvetres-2020-0039.
- [73]Donato M, Gómez-Lechón M, Castell J. Rat hepatocytes cultured on a monkey kidney cell line:expression of biotransformation and hepatic metabolic activities[J/OL]. Toxicol Vitro, 1991, 5(5-6):435-438. DOI:10.1016/0887-2333(91)90067-N.
- [74]Tabares E, Olivares I, Santurde G, Garcia M J, Martin E, Carnero M. African swine fever virus DNA:deletions and additions during adaptation to growth in monkey kidney cells[J/OL]. Arch Virol, 1987, 97(3):333-346. DOI:10.1007/BF01314431.
- [75]Santurde G, Gonzalvo F R, Carnero M, Tabarés E.Genetic stability of african swine fever virus grown in monkey kidney cells[J/OL]. Arch Virol, 1988, 98(1):117-122. DOI:10.1007/BF01321012.
- [76]Macpherson I, Stoker M. Polyoma transformation of hamster cell clones—an investigation of genetic factors affecting cell competence[J/OL]. J Virol, 1962, 16(2):147-151. DOI:10.1016/0042-6822(62)90290-8.
- [77]Macpherson I. Characteristics of a hamster cell clone transformed by polyoma virus[J]. J Natl Cancer Inst Monogr, 1963, 30(4):795-815.
- [78]Teng X, Li C, Yi X, Zhuang Y. A novel scale-up strategy for cultivation of BHK-21 cells based on similar hydrodynamic environments in the bioreactors[J/OL].Biob, 2021, 8(1):1-13. DOI:10.1186/s40643-021-00393-3.
- [79]Park S-Y, Kim J-Y, Ryu K-H, Kim A-Y, Kim J-M,Ko Y-J, Lee E-G. Production of a foot-and-mouth disease vaccine antigen using suspension-adapted BHK-21 cells in a bioreactor[J/OL]. Vaccines, 2021, 9(5):505. DOI:10.3390/vaccines9050505.
- [80]Tessler J, Hess W, Pan I, Trautman R.Immunofluorescence plaque assay for african swine fever virus[J]. Can J Comp Med, 1974, 38(4):443.
- [81]Graham F L, Smiley J, Russell W, Nairn R.Characteristics of a human cell line transformed by DNA from human adenovirus type 5[J/OL]. J Gen Virol,1977, 36(1):59-72. DOI:10.1099/0022-1317-36-1-59.
- [82]Szymanowski F, Hugo A A, Alves P, Sim?es P,Gómez-Zavaglia A, Pérez P F. Endocytosis and intracellular traffic of cholesterol-PDMAEMA liposome complexes in human epithelial-like cells[J/OL].Colloids Surf B, 2017, 156:38-43. DOI:10.1016/j.colsurfb.2017.04.058.
- [83]Ke?ler C, Forth J H, Keil G M, Mettenleiter T C,Blome S, Karger A. The intracellular proteome of African swine fever virus[J/OL]. Sci Rep, 2018, 8(1):1-9. DOI:10.1038/s41598-018-32985-z.