流感病毒感染动物疾病模型的研究进展Advances in Research on Infected Animal Models of Influenza A Virus
王泽华;闵锐;周乐;张评浒;
摘要(Abstract):
流感主要是指由甲型流感病毒(Influenza A virus, IAV)感染引起的急性呼吸道疾病。构建差异化的感染动物模型模拟IAV的感染、发病及传播过程不仅有助于揭示流感病毒的传播机制与致病机理,而且对流感大流行的预警和防治有着重要意义。本文基于IAV跨种间传播的差异机制从不同动物模型呼吸道唾液酸受体亚型分布的表型差异及其对人流感病毒的易感性等多方面综述了流感病毒感染动物模型的优缺点及其最新研究进展,以期为IAV致病机制研究,疫苗药物的研发提供理论参考。
关键词(KeyWords): 流感病毒;动物模型;唾液酸受体;感染机制;小鼠
基金项目(Foundation): 江苏省高等学校大学生创新创业训练计划项目(202111117111Y),题目:季节性H3N2流感病毒药效评价模型的建立;; 扬州市科技局社会发展项目(YZ2020122)题目:新冠疫情下重症流感流行特征及生物标志物的研究~~
作者(Authors): 王泽华;闵锐;周乐;张评浒;
DOI: 10.13242/j.cnki.bingduxuebao.004249
参考文献(References):
- [1] WHO. Influenza(Seasonal)[EB/OL].[2018-11-8].https://www. who. int/en/news-room/fact-sheets/detail/influenza-(seasonal).
- [2] Tong S X, Zhu X Y, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X F, Recuenco S, Gomez J, Chen L M, Johnson A, Tao Y, Dreyfus C, Yu W L,Mcbride R, Carney P J, Gilbert A T, Chang J, Guo Z,Davis C T, Paulson J C, Stevens J, Rupprecht C E,Holmes E C, Wilson I A, Donis R O. New world bats harbor diverse influenza A viruses[J/OL]. PLoS Pathog, 2013, 9(10):e1003657. DOI:10.1371/journal.ppat.1003657.
- [3] Skehel J J, Wiley D C. Receptor binding and membrane fusion in virus entry:The influenza hemagglutinin[J/OL]. Annu Rev Biochem, 2000, 69:531-569. DOI:10.1146/annurev.biochem.69.1.531.
- [4] De Vries E, Du W, Guo H, De Haan C a M. Influenza A virus hemagglutinin-neuraminidase-receptor balance:preserving virus motility[J/OL]. Trends Microbiol,2020, 28(1):57-67. DOI:10.1016/j.tim.2019.08.010.
- [5] Altman M O, Gagneux P. Absence of Neu5Gc and presence of anti-Neu5Gc antibodies in humans-an evolutionary perspective[J/OL]. Front Immunol, 2019,10(1):789. DOI:10.3389/fimmu.2019.00789.
- [6] Mok C K P, Lee H H Y, Lestra M, Nicholls J M,Chan M C W, Sia S F, Zhu H C, Poon L L M, Guan Y, Peiris J S M. Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts[J/OL]. J Virol, 2014, 88(6):3568-3576. DOI:10.1128/jvi.02740-13.
- [7] Cheng K, Yu Z, Chai H, Sun W, Xin Y, Zhang Q,Huang J, Zhang K, Li X, Yang S, Wang T, Zheng X,Wang H, Qin C, Qian J, Chen H, Hua Y, Gao Y, Xia X. PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice[J/OL]. Virology,2014, 468:207-213. DOI:10.1016/j.virol.2014.08.010.
- [8] Wu H B, Peng X M, Lu R F, Xu L H, Liu F M,Cheng L F, Lu X Y, Yao H P, Wu N P. Virulence of an H5N8 highly pathogenic avian influenza is enhanced by the amino acid substitutions PB2 E627K and HA A149V[J/OL]. Infect Genet Evol, 2017, 54:347-354.DOI:10.1016/j.meegid.2017.07.026.
- [9] Yu Z J, Cheng K H, Wang T C, Ren Z G, Wu J Q,He H B, Gao Y W. Two mutations in viral protein enhance the adaptation of waterfowl-origin H3N2 virus in murine model[J]. Virus Res, 2019, 269(1):197639.
- [10]Xu G L, Wang F, Li Q C, Bing G X, Xie S J, Sun S J, Bian Z J, Sun H J, Feng Y, Peng X W, Jiang H,Zhu L Q, Fan X Z, Qin Y M, Ding J B. Mutations in PB2 and HA enhanced pathogenicity of H4N6 avian influenza virus in mice[J/OL]. J Gen Virol, 2020, 101(9):910-920. DOI:10.1099/jgv.0.001192.
- [11]Long J S, Giotis E S, MoncorgéO, Frise R, Mistry B,James J, Morisson M, Iqbal M, Vignal A, Skinner M A, Barclay W S. Species difference in ANP32A underlies influenza A virus polymerase host restriction[J/OL]. Nature, 2016, 529(7584):101-104. DOI:10.1038/nature16474.
- [12]Peri S, Kulkarni A, Feyertag F, Berninsone P M,Alvarez-Ponce D. Phylogenetic distribution of CMPNeu5Ac hydroxylase(CMAH), the enzyme synthetizing the proinflammatory human xenoantigen Neu5Gc[J/OL]. Genome Biol Evol, 2018, 10(1):207-219. DOI:10.1093/gbe/evx251.
- [13]马树杰,张博,孔宇飞,关云涛. A型流感病毒感染雪貂造模的研究进展[J/OL].中国实验动物学报,2019,27(2):254-260. DOI:10. 3969/j. issn. 1005-4847.2019. 02. 020.
- [14]李梦楠,郭晶,宋亚婷,张臻,李玉保,李旭勇.禽流感病毒感染哺乳动物模型研究进展[J].畜牧与兽医,2020, 52(2):142-146.
- [15]Ning Z Y, Luo M Y, Qi W B, Yu B, Jiao P R, Liao M. Detection of expression of influenza virus receptors in tissues of BALB/c mice by histochemistry[J/OL]. Vet Res Commun, 2009, 33(8):895-903. DOI:10.1007/s11259-009-9307-3.
- [16]Song Y, Wang X, Zhang H, Tang X, Li M, Yao J,Jin X, Ertl H C J, Zhou D. Repeated low-dose influenza virus infection causes severe disease in mice:a model for vaccine evaluation[J/OL]. J Virol, 2015, 89(15):7841-7851. DOI:10.1128/JVI.00976-15.
- [17]Alberts R, Srivastava B, Wu H, Viegas N, Geffers R,Klawonn F, Novoselova N, Do Valle T Z, Panthier JJ, Schughart K. Gene expression changes in the host response between resistant and susceptible inbred mouse strains after influenza A infection[J/OL]. Microbes Infect, 2010, 12(4):309-318. DOI:10.1016/j.micinf.2010.01.008.
- [18]董丹,王雪峰,南春红,岳志军.不同鼠龄昆明种小鼠流感病毒肺炎动物模型的比较研究[J/OL].天津中医药,2017, 34(04):250-254. DOI:10.11656/j.issn.1672-1519.2017.04.12.
- [19]Nguyen T-Q, Rollon R, Choi Y-K. Animal models for influenza research:strengths and weaknesses[J/OL].Viruses, 2021, 13(6):1011. DOI:10.3390/v13061011.
- [20]Pica N, Chou Y-Y, Bouvier N M, Palese P.Transmission of influenza B viruses in the guinea pig[J/OL]. J Virol, 2012, 86(8):4279-4287. DOI:10.1128/JVI.06645-11.
- [21]Iwatsuki-Horimoto K, Nakajima N, Ichiko Y, SakaiTagawa Y, Noda T, Hasegawa H, Kawaoka Y. Syrian hamster as an animal model for the study of human influenza virus infection[J/OL]. J Virol, 2018, 92(4):e01693-17. DOI:10.1128/JVI.01693-17.
- [22]姜静,吕琦,李枫棣,戚菲菲,王顺意,王冠澎,徐艳峰,鲍琳琳.应用季节性流感病毒H3N2鼠适应株建立小鼠模型[J/OL].中国比较医学杂志,2019, 29(06):22-26. DOI:10.3969/j.issn.1671-7856.2019.06.004.
- [23]Wasik B R, Voorhees I E H, Barnard K N, AlfordLawrence B K, Weichert W S, Hood G, Nogales A,Martinez-Sobrido L, Holmes E C, Parrish C R.Influenza viruses in mice:deep sequencing analysis of serial passage and effects of sialic acid structural variation[J/OL]. J Virol, 2019, 93(23):e01039-19. DOI:10.1128/jvi.01039-19.
- [24]Rajao D S, Vincent A L. Swine as a model for influenza A virus infection and immunity[J/OL]. ILAR J, 2015,56(1):44-52. DOI:10.1093/ilar/ilv002.
- [25]Khatri M, Dwivedi V, Krakowka S, Manickam C, Ali A, Wang L Y, Qin Z M, Renukaradhya G J, Lee C W.Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs:a potential animal model for human H1N1 influenza virus[J/OL]. J Virol, 2010,84(21):11210-11218. DOI:10.1128/JVI.01211-10.
- [26]Iwatsuki-Horimoto K, Nakajima N, Shibata M,Takahashi K, Sato Y, Kiso M, Yamayoshi S, Ito M,Enya S, Otake M, Kangawa A, Lopes T J D S, Ito H,Hasegawa H, Kawaoka Y. The microminipig as an animal model for influenza A virus infection[J/OL]. J Virol, 2017, 91(2):e01716-16. DOI:10.1128/JVI.01716-16.
- [27]Yang Z-F, Zhao J, Zhu Y-T, Wang Y-T, Liu R, Zhao S-S, Li R-F, Yang C-G, Li J-Q, Zhong N-S. The tree shrew provides a useful alternative model for the study of influenza H1N1 virus[J/OL]. Virol J, 2013, 10(1):1-9. DOI:10.1186/1743-422X-10-111.
- [28]Sanada T, Yasui F, Honda T, Kayesh M E H, Takano J-I, Shiogama Y, Yasutomi Y, Tsukiyama-Kohara K,Kohara M. Avian H5N1 influenza virus infection causes severe pneumonia in the Northern tree shrew(Tupaia belangeri)[J/OL]. Virology, 2019, 529:101-110.DOI:10.1016/j.virol.2019.01.015.
- [29]Zhang J, Xiao H, Bi Y, Long Q, Gong Y, Dai J, Sun M, Cun W. Characteristics of the tree shrew humoral immune system[J/OL]. Mol Immunol, 2020, 127(1):175-185. DOI:10.1016/j.molimm.2020.09.009.
- [30]Varki N M, Strobert E, Dick E J, Benirschke K, Varki A. Biomedical differences between human and nonhuman hominids:potential roles for uniquely human aspects of sialic acid biology[J/OL]. Annu Rev Pathol,2011, 6(1):365-393. DOI:10.1146/annurev-pathol-011110-130315.
- [31]Su W, Kinoshita R, Gray J, Ji Y, Yu D, Peiris J S M,Yen H L. Seroprevalence of dogs in Hong Kong to human and canine influenza viruses[J/OL]. Vet Rec Open, 2019, 6(1):e000327.
- [32]Bui C H, Yeung H W, Ho J C, Leung C Y, Hui K P,Perera R A, Webby R J, Schultz-Cherry S L, Nicholls J M, Peiris J S M. Tropism of SARS-CoV-2, SARSCoV, and influenza virus in canine tissue explants[J/OL]. J Infect Dis, 2021, 224(5):821-830. DOI:10.1136/vetreco-2018-000327.
- [33]Feng X, Wang Z, Shi J, Deng G, Kong H, Tao S, Li C, Liu L, Guan Y, Chen H. Glycine at position 622 in PB1 contributes to the virulence of H5N1 avian influenza virus in mice[J]. J Virol, 2016, 90(4):1872-1879.
- [34]Zhong G, Le M Q, Lopes T J S, Halfmann P, Hatta M, Fan S, Neumann G, Kawaoka Y. Mutations in the PA protein of avian H5N1 influenza viruses affect polymerase activity and mouse virulence[J/OL]. J Virol, 2018, 92(4):e01557-17. DOI:10.1128/JVI.02387-15.
- [35]Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, Liu W, Bu Z, Kawaoka Y, Chen H. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice[J/OL]. J Virol,2008, 82(3):1146-1154. DOI:10.1128/JVI.00376-08.
- [36]Sun Y, Hu Z, Zhang X, Chen M, Wang Z, Xu G, Bi Y, Tong Q, Wang M, Sun H, Pu J, Iqbal M, Liu J.An R195K mutation in the PA-X protein increases the virulence and transmission of influenza A virus in mammalian hosts[J/OL]. J Virol, 2020, 94(11):e01817-19. DOI:10.1128/JVI.01817-19.