应激颗粒在冠状病毒复制中的作用及机制Role and Involved Mechanism of Stress Granules During Coronavirus Replication
汪圆松,乔嘉璐,孙宾莲,胡康洪
摘要(Abstract):
近年来多种冠状病毒感染后引发患者严重的呼吸道疾病,造成危害人类健康的严重公共卫生事件。新型冠状病毒(SARS-CoV-2)暴发以来,大量研究使得人们对冠状病毒与宿主相互作用机制有更多的了解,其中关于病毒感染后应激颗粒的形成和抗病毒作用也做了大量研究。病毒的RNA和蛋白可以激活宿主细胞内蛋白激酶R(Protein kinase R,PKR)及其下游信号,刺激应激颗粒(Stress granules,SGs)的形成,进而降低病毒在宿主细胞内所需蛋白的翻译水平,抑制病毒复制。然而冠状病毒与宿主长期博弈过程中也衍生出对抗细胞SGs的相应机制,比如利用蛋白与SGs相互作用,来抑制SGs的形成和解聚,逃逸细胞对病毒的抑制作用,保证病毒稳定复制,其中新型冠状病毒就是典型的例子。因此SGs的诱导为抗冠状病毒可能提供一个新型治疗策略。本文对冠状病毒感染抵抗细胞应激颗粒的形成促进其解聚的分子机制进行综述。
关键词(KeyWords): 新型冠状病毒(SARS-CoV-2);蛋白激酶R(Protein kinase R,PKR);应激颗粒(Stress granules,SGs);病毒复制;先天免疫
基金项目(Foundation): 湖北省重点研发计划项目(社会发展领域)(项目号:2022BCA018),题目:多能干细胞来源胰岛定向分化技术体系~~
作者(Author): 汪圆松,乔嘉璐,孙宾莲,胡康洪
DOI: 10.13242/j.cnki.bingduxuebao.004304
参考文献(References):
- [1] V′kovski P, Kratzel A, Steiner S, Stalder H, Thiel V.Coronavirus biology and replication:implications for SARS-CoV-2[J]. Nat Rev Microbiol, 2021 Mar, 19(3):155-170.
- [2] Ivanov P, Kedersha N, Anderson P. Stress granules and processing bodies in translational control[J]. Cold Spring Harb Perspect Biol, 2019, 11(5):a032813.
- [3] Bogorad A M, Lin K Y, Marintchev A. Novel mechanisms of eIF2β action and regulation by eIF2αphosphorylation[J]. Nucleic Acids Research, 2017, 45(20):11962-11979.
- [4] Kedersha N L, Gupta M, Li W, Miller I, Anderson P.RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of mammalian stress granules[J]. J Cell Biol, 1999, 147(7):1431–1442.
- [5] Walsh D, Mohr I. Viral subversion of the host protein synthesis machinery[J]. Nat Rev Microbiol, 2011, 9(12):860-875.
- [6] Liu Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R,Liu M, Zhu D, Chen S, Zhang S, Zhao XX, Huang J,Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L,Rehman MU, Chen X. The role of host eIF2α in viral infection[J]. Virol J, 2020, 17(1):112.
- [7] Qin Q, Hastings C, Miller CL. Mammalian orthoreo virus particles induce and are recruited into stress granules at early times post infection[J]. J Virol, 2009,83(21):11090–11101.
- [8] Dougherty JD, Tsai WC, Lloyd RE. Multiple poliovirus proteins repress cytoplasmic RNA granules[J]. Viruses, 2015, 7(12):6127–6140.
- [9] Garaigorta U, Heim MH, Boyd B, Wieland S, Chisari FV. Hepatitis C virus induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress[J]. J Virol, 2012, 86(20):11043–11056.
- [10]Dinh PX, Beura LK, Das PB, Panda D, Das A,Pattnaik AK. Induction of stress granule-like structures in vesicular stomatitis virus-infected cells[J]. J Virol,2013, 87(1):372–383.
- [11]Hopkins KC, Tartell MA, Herrmann C, Hackett BA,Taschuk F, Panda D, Menghani SV, Sabin LR,Cherry S. Virus-induced translational arrest through4EBP1/2-dependent decay of 5′-top mRNAs restricts viral infection[J]. Proc Natl Acad Sci USA, 2015, 112(22):E2920–E2929.
- [12]Xu S, Chen D, Chen D, Hu Q, Zhou L, Ge X, Han J,Guo X, Yang H. Pseudorabies virus infection inhibits stress granules formation via dephosphorylating eIF2α[J]. Vet Microbiol, 2020, 247:108786.
- [13]von der Haar T, Gross JD, Wagner G, McCarthy JE.The mRNA cap-binding protein eIF4E in posttranscriptional gene expression[J]. Nat Struct Mol Biol,2004, 11(6):503–511.
- [14]Sharma DK, Bressler K, Patel H, Balasingam N,Thakor N. Role of eukaryotic initiation factors during cellular stress and cancer progression[J]. J Nucleic Acids, 2016, 2016:8235121.
- [15]Cheng J, Gao S, Zhu C, Liu S, Li J, Kang J, Wang Z, Wang T. Typical stress granule proteins interact with the 3′untranslated region of enterovirus D68 to inhibit viral replication[J]. J Virol, 2020, 94(7):e02041-19.
- [16]Esclatine A, Taddeo B, Roizman B. Herpes simplex virus 1 induces cytoplasmic accumulation of TIA-1/TIAR and both synthesis and cytoplasmic accumulation of tristetraprolin, two cellular proteins that bind and destabilize AU-rich RNAs[J]. J Virol, 2004, 78(16):8582–8592.
- [17]Li W, Li Y, Kedersha N, Anderson P, Emara M,Swiderek KM, Moreno GT, Brinton MA. Cell proteins TIA-1 and TIAR interact with the 3′stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication[J]. J Virol, 2002, 76(23):11989–12000.
- [18]Qin Q, Carroll K, Hastings C, Miller CL. Mammalian orthoreovirus escape from host translational shutoff correlates with stress granule disruption and is independent of eIF2alpha phosphorylation and PKR[J].J Virol, 2011, 85(17):8798–8810.
- [19]Bidet K, Dadlani D, Garcia-Blanco MA. G3BP1,G3BP2 and carpin1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA[J]. PLoS Pathog, 2014,10(7):e1004242.
- [20]Valiente-Echeverría F, Melnychuk L, Vyboh K,Ajamian L, Gallouzi IE, Bernard N, Mouland AJ.eEF2 and Ras-GAP SH3 domain-binding protein(G3BP1)modulate stress granule assembly during HIV-1 infection[J]. Nat Commun, 2014, 5:4819.
- [21]Zaborowska I, Kellner K, Henry M, Meleady P,Walsh D. Recruitment of host translation initiation factor eIF4G by the vaccinia virus ssDNA-binding protein I3[J]. Virology, 2012, 425(1):11–22.
- [22]Guo X, Yu K, Xin Z, Liu L, Gao Y, Hu F, Ma X, Yu K, Li Y, Huang B, Yan Z, Wu J. Porcine epidemic diarrhea virus infection subverts arsenite-induced stress granules formation[J]. Front Microbiol, 2022, 13:931922.
- [23]Sun L, Chen H, Ming X, Bo Z, Shin HJ, Jung YS,Qian Y. Porcine epidemic diarrhea virus infection induces caspase-8-mediated G3BP1 cleavage and subverts stress granules to promote viral replication[J/OL]. J Virol, 2021, 95(9):e02344-20.
- [24]Wen W, Zhao Q, Yin M, Qin L, Hu J, Chen H, Li X, Qian P. Seneca valley virus 3C protease inhibits stress granule formation by disrupting eIF4G-G3BP1interaction[J]. Front Immunol, 2020, 11:577838.
- [25]Visser LJ, Medina GN, Rabouw HH, de Groot RJ,Langereis MA, de Los Santos T, van Kuppeveld FJM.Foot-and-mouth disease virus leader protease cleaves G3BP1 and G3BP2 and inhibits stress granule formation[J/OL]. J Virol, 2019, 93(2):e00922-18.
- [26]Onomoto K, Yoneyama M, Fung G, Kato H, Fujita T.Antiviral innate immunity and stress granule responses[J]. Trends Immunol, 2014, 35(9):420-8.
- [27]Reineke LC, Lloyd RE. The stress granule protein G3BP1 recruits protein kinaser to promote multiple innate immune antiviral responses[J]. J Virol, 2015, 89(5):2575-89.
- [28]Visser LJ, Langereis MA, Rabouw HH, Wahedi M,Muntjewerff EM, de Groot RJ, van Kuppeveld FJM.Essential role of enterovirus 2a protease in counteracting stress granule formation and the induction of type I interferon[J/OL]. J Virol, 2019, 93(10):e00222-19.
- [29]Burgess HM, Mohr I. Defining the role of stress granules in innate immune suppression by the herpes simplex virus 1 endoribonuclease VHS[J/OL]. J Virol,2018, 92(15):e00829-18.
- [30]Reikine S, Nguyen JB, Modis Y. Pattern recognition and signaling mechanisms of RIG-I and MDA5[J].Front Immunol, 2014, 5:342.
- [31]Wu B, Hur S. How rig-I like receptors activate mavs[J]. Curr Opin Virol, 2015, 12:91-8.
- [32]Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses[J]. Nat Rev Microbiol, 2019, 17(3):181-192.
- [33]Bai Z, Cao Y, Liu W, Li J. The SARS-CoV-2nucleocapsid protein and its role in viral structure,biological functions, and a potential target for drug or vaccine mitigation[J]. Viruses, 2021, 13(6):1115.
- [34]Hao X, Cheng S, Wu D, Wu T, Lin X, Wang C.Reconstruction of the full transmission dynamics of COVID-19 in wuhan[J]. Nature, 2020, 584(7821):420-424.
- [35]Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F,Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L,Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF,Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus:implications for virus origins and receptor binding[J]. Lancet, 2020, 395(10224):565-574.
- [36]Han P, Li L, Liu S, Wang Q, Zhang D, Xu Z, Han P, Li X, Peng Q, Su C, Huang B, Li D, Zhang R,Tian M, Fu L, Gao Y, Zhao X, Liu K, Qi J, Gao GF,Wang P. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2[J/OL]. Cell, 2022, 185(4):630-640.e10.
- [37]Xiong M, Su H, Zhao W, Xie H, Shao Q, Xu Y.What coronavirus 3c-like protease tells us:from structure, substrate selectivity, to inhibitor design[J].Med Res Rev, 2021, 41(4):1965-1998.
- [38]Kirchdoerfer RN, Ward AB. Structure of the SARSCoV nsp12 polymerase bound to nsp7 and nsp8 cofactors[J]. Nat Commun, 2019, 10(1):2342.
- [39]Yuen CK, Lam JY, Wong WM, Mak LF, Wang X,Chu H, Cai JP, Jin DY, To KK, Chan JF, Yuen KY,Kok KH. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6function as potent interferon antagonists[J]. Emerg Microbes Infect, 2020, 9(1):1418-1428.
- [40]Fu YZ, Wang SY, Zheng ZQ, Yi Huang, Li WW, Xu ZS, Wang YY. SARS-CoV-2 membrane glycoprotein m antagonizes the MAVS-mediated innate antiviral response[J]. Cell Mol Immunol, 2021, 18(3):613-620.
- [41]Woodbridge Y, Amit S, Huppert A, Kopelman NM.Viral load dynamics of SARS-CoV-2 delta and omicron variants following multiple vaccine doses and previous infection[J]. Nat Commun, 2022, 13(1):6706.
- [42]Saheb Sharif-Askari N, Saheb Sharif-Askari F,Mdkhana B, Hussain Alsayed HA, Alsafar H, Alrais ZF, Hamid Q, Halwani R. Upregulation of oxidative stress gene markers during SARS-CoV-2 viral infection[J]. Free Radic Biol Med, 2021, 172:688-698.
- [43]Liu P, Wang X, Sun Y, Zhao H, Cheng F, Wang J,Yang F, Hu J, Zhang H, Wang CC, Wang L. Sars-cov-2 orf8 reshapes the ER through forming mixed disulfides with ER oxidoreductases[J]. Redox Bio, 2022 Aug,54:102388.
- [44]Koepke L, Hirschenberger M, Hayn M, Kirchhoff F,Sparrer KM. Manipulation of autophagy by SARS-CoV-2 proteins[J]. Autophagy, 2021, 17(9):2659-2661.
- [45]Zhang X, Yang Z, Pan T, Long X, Sun Q, Wang PH,Li X, Kuang E. SARS-CoV-2 ORF3a induces RETREG1/FAM134B-dependent reticulophagy and triggers sequential ER stress and inflammatory responses during SARS-CoV-2 infection[J]. Autophagy, 2022,3:1-17.
- [46]Li X, Hou P, Ma W, Wang X, Wang H, Yu Z, Chang H, Wang T, Jin S, Wang X, Wang W, Zhao Y, Zhao Y, Xu C, Ma X, Gao Y, He H. SARS-CoV-2 ORF10suppresses the antiviral innate immune response by degrading mavs through mitophagy[J]. Cell Mol Immunol, 2022, 19(1):67-78.
- [47]Gerassimovich YA, Miladinovski-Bangall SJ, Bridges KM, Boateng L, Ball LE, Valafar H, Nag A.Proximity-dependent biotinylation detects associations between SARS coronavirus nonstructural protein 1 and stress granule-associated proteins[J]. J Biol Chem,2021, 297(6):101399.
- [48]Gao B, Gong X, Fang S, Weng W, Wang H, Chu H,Sun Y, Meng C, Tan L, Song C, Qiu X, Liu W,Forlenza M, Ding C, Liao Y. Inhibition of anti-viral stress granule formation by coronavirus endoribonuclease nsp15 ensures efficient virus replication[J]. PLoS Pathog, 2021, 17(2):e1008690.
- [49]Luo L, Li Z, Zhao T, Ju X, Ma P, Jin B, Zhou Y, He S, Huang J, Xu X, Zou Y, Li P, Liang A, Liu J, Chi T, Huang X, Ding Q, Jin Z, Huang C, Zhang Y.SARS-CoV-2 nucleocapsid protein phase separates with G3BPs to disassemble stress granules and facilitate viral production[J]. Sci Bull(Beijing), 2021, 66(12):1194-1204.
- [50]Nabeel-Shah S, Lee H, Ahmed N, Burke GL,Farhangmehr S, Ashraf K, Pu S, Braunschweig U,Zhong G, Wei H, Tang H, Yang J, Marcon E,Blencowe BJ, Zhang Z, Greenblatt JF. SARS-CoV-2nucleocapsid protein binds host mrnas and attenuates stress granules to impair host stress response[J].iScience, 2022, 25(1):103562.
- [51]Cai T, Yu Z, Wang Z, Liang C, Richard S. Arginine methylation of SARS-CoV-2 nucleocapsid protein regulates RNA binding, its ability to suppress stress granule formation, and viral replication[J]. J Biol Chem, 2021, 297(1):100821.
- [52]Somasekharan SP, Gleave M. SARS-CoV-2nucleocapsid protein interacts with immunoregulators and stress granules and phase separates to form liquid droplets[J]. FEBS Lett, 2021, 595(23):2872-2896.
- [53]Zheng ZQ, Wang SY, Xu ZS, Fu YZ, Wang YY.SARS-CoV-2 nucleocapsid protein impairs stress granule formation to promote viral replication[J]. Cell Discov, 2021, 7(1):38.
- [54]Liu H, Bai Y, Zhang X, Gao T, Liu Y, Li E, Wang X, Cao Z, Zhu L, Dong Q, Hu Y, Wang G, Song C,Niu X, Zheng T, Wang D, Liu Z, Jin Y, Li P, Bian X, Cao C, Liu X. SARS-CoV-2 N protein antagonizes stress granule assembly and IFN production by interacting with G3BPs to facilitate viral replication[J/OL]. J Virol, 2022, 96(12):e0041222.
- [55]Zheng Y, Deng J, Han L, Zhuang MW, Xu Y, Zhang J, Nan ML, Xiao Y, Zhan P, Liu X, Gao C, Wang PH. SARS-CoV-2 nsp5 and N protein counteract the rigI signaling pathway by suppressing the formation of stress granules[J]. Signal Transduct Target Ther,2022, 7(1):22.
- [56]Pan Z, Feng Y, Wang Z, Lei Z, Han Q, Zhang J.MERS-CoV nsp1 impairs the cellular metabolic processes by selectively downregulating mrnas in a novel granules[J]. Virulence, 2022, 13(1):355-369.
- [57]Rabouw HH, Langereis MA, Knaap RC, Dalebout TJ,Canton J, Sola I, Enjuanes L, Bredenbeek PJ, Kikkert M, de Groot RJ, van Kuppeveld FJ. Middle east respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses[J/OL]. PLoS Pathog, 2016, 12(10):e1005982.
- [58]Raaben M, Groot Koerkamp MJ, Rottier PJ, de Haan CA. Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies. Cell Microbiol. 2007 Sep; 9(9):2218-2229.
- [59]Sola I, Galán C, Mateos-Gómez PA, Palacio L,Zú?iga S, Cruz JL, Almazán F, Enjuanes L. The polypyrimidine tract-binding protein affects coronavirus RNA accumulation levels and relocalizes viral RNAs to novel cytoplasmic domains different from replicationtranscription sites. J Virol. 2011 May;85(10):5136-5149.
- [60]Byun WG, Lee J, Kim S, Park SB. Harnessing stress granule formation by small molecules to inhibit the cellular replication of SARS-CoV-2[J]. Chem Commun(Camb), 2021, 57(93):12476-12479.
- [61]Biedenkopf N, Lange-Grünweller K, Schulte FW,Wei?er A, Müller C, Becker D, Becker S, Hartmann RK, Grünweller A. The natural compound silvestrol is a potent inhibitor of ebola virus replication[J]. Antiviral Res. 2017, 137:76-81.
- [62]Ziehr B, Lenarcic E, Cecil C, Moorman NJ. The eIF4aIII RNA helicase is a critical determinant of human cytomegalovirus replication[J]. Virology, 2016, 489:194-201.