猪轮状病毒感染小鼠肠道组织的转录组分析Transcriptome Analysis of Intestinal Tissue Infected with Porcine Rotavirus in Mice
李颖,李树东,秦达,曲艺,程荣叶,侯喜林,余丽芸
摘要(Abstract):
猪轮状病毒(Porcine rotavirus,PoRV)是在世界范围内与严重腹泻疾病相关的主要肠道病原体,是新生仔猪肠炎和腹泻致死的重要原因之一。为了深入了解猪轮状病毒感染肠道后其致病机制以及引起宿主的抗病毒和修复机制,我们分别饲喂培养基和猪轮状病毒病毒液5d后,采取5 d、10 d、15 d、20 d、25 d小鼠空肠组织进行高通量转录组测序分析。利用基因本体论(Gene Ontology,GO)数据库功能富集分析、京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析差异表达基因(Differentially Expressed Gene,DEGs),选取部分差异表达基因,进行qRT-PCR验证。结果显示,与对照组相比,5个时间段上调DEGs有849个,下调DEGs有824个。对DEGs进行5个功能富集,有共同差异基因15个。这些差异表达基因广泛参与脂质合成与代谢、免疫、细胞增殖、细胞凋亡等活动,主要注释到PPAR、NOD-like、IL-17等信号通路中。qRT-PCR验证上皮细胞增殖相关基因PBLD、CCL24、Nr1d1、Fst表达趋势与RNA-seq结果趋势一致。此分析提示PoRV感染小鼠肠上皮细胞后可能通过细胞增殖相关基因的高表达或其信号通路的激活进行受损的肠上皮的修复。
关键词(KeyWords): 猪轮状病毒;差异表达基因;转录组测序分析;小鼠肠道组织
基金项目(Foundation): “三纵”科研团队(自然)项目(项目号:TDJH201904),题目:动物肠道菌群与免疫学研究创新团队;; 黑龙江八一农垦大学研究生创新科研项目(项目号:YJSCX2021-Y101)题目:类干酪乳杆菌对轮状病毒损伤的上皮细胞的修复作用的研究~~
作者(Author): 李颖,李树东,秦达,曲艺,程荣叶,侯喜林,余丽芸
DOI: 10.13242/j.cnki.bingduxuebao.004360
参考文献(References):
- [1] Iaconis G, Jackson B, Childs K, Boyce M, Goodbourn S, Blake N, Iturriza-Gomara M, Seago J. Rotavirus NSP1 Inhibits Type I and Type III Interferon Induction[J/OL]. Viruses, 2021, 13(4):589-606.DOI:10.3390/v13040589.
- [2] Omatola C A, Olaniran A O. Rotaviruses:From Pathogenesis to Disease Control-A Critical Review[J/OL]. Viruses, 2022, 14(5):875-909. DOI:10.3390/v14050875.
- [3] Mitra S, Lo M, Saha R, Deb A K, Debnath F,Miyoshi S I, Dutta S, Chawla-Sarkar M. Epidemiology of major entero-pathogenic viruses and genetic characterization of Group A rotaviruses among children(≤5 years) with acute gastroenteritis in eastern India,2018-2020[J/OL]. J Appl Microbiol, 2022, 133(2):758-783.DOI:10.1111/jam.15594.
- [4] Lestari F B, Vongpunsawad S, Wanlapakorn N,Poovorawan Y. Rotavirus infection in children in Southeast Asia 2008-2018:disease burden, genotype distribution, seasonality, and vaccination[J/OL]. J Biomed Sci, 2020, 27(1):66-85.DOI:10.1186/s12929-020-00649-8.
- [5] Roczo-Farkas S, Dunlop R H, Donato C M, Kirkwood C D, McOrist S. Rotavirus group C infections in neonatal and grower pigs in Australia[J/OL]. Vet Rec,2021, 188(12):296-300.DOI:10.1002/vetr.296.
- [6] Leblanc D, Raymond Y, Lemay M J, Champagne C P,Brassard J. Effect of probiotic bacteria on porcine rotavirus OSU infection of porcine intestinal epithelial IPEC-J2 cells[J/OL]. Arch Virol, 2022, 167(10):1999-2010.DOI:10.1007/s00705-022-05510-x.
- [7]周德刚,杨红玉,项朝荣,马超锋.河南部分地区猪病毒性腹泻感染状况调查[J].家畜生态学报,2021, 42(06):63-68.
- [8] Zhao S, Jin X, Zang L, Liu Z, Wen X, Ran X. Global infection rate of rotavirus c during 1980-2022 and analysis of critical factors in the host range restriction of Virus VP4[J/OL]. Viruses, 2022, 14(12):2826-2838.DOI:10.3390/v14122826.
- [9] Miyabe F M, Dall Agnol A M, Leme R A, Oliveira T E S, Headley S A, Fernandes T, de Oliveira A G,Alfieri A F, Alfieri A A. Porcine rotavirus B as primary causative agent of diarrhea outbreaks in newborn piglets[J/OL]. Sci Rep, 2020, 10(1):22002:1-9. DOI:10.1038/s41598-020-78797-y.
- [10]Amimo J O, Raev S A, Chepngeno J, Mainga A O,Guo Y, Saif L, Vlasova A N. Rotavirus interactions with host intestinal epithelial cells[J/OL]. Front Immunol, 2021, 12:793841:1-17. DOI:10.3389/fimmu.2021.793841.
- [11]Engevik M A, Banks L D, Engevik K A, ChangGraham A L, Perry J L, Hutchinson D S, Ajami N J,Petrosino J F, Hyser J M. Rotavirus infection induces glycan availability to promote ileum-specific changes in the microbiome aiding rotavirus virulence[J/OL]. Gut Microbes, 2020, 11(5):1324-1347. DOI:10.1080/19490976.2020.1754714.
- [12]Dian Z, Sun Y, Zhang G, Xu Y, Fan X, Yang X, Pan Q, Peppelenbosch M, Miao Z. Rotavirus-related systemic diseases:clinical manifestation, evidence and pathogenesis[J/OL]. Crit Rev Microbiol, 2021, 47(5):580-595.DOI:10.1080/1040841x.2021.1907738.
- [13]Pearce S C, Coia H G, Karl J P, Pantoja-Feliciano I G,Zachos N C, Racicot K. Intestinal in vitro and ex vivo models to study host-microbiome interactions and acute stressors[J/OL]. Front Physiol, 2018, 9:1584:1-17.DOI:10.3389/fphys.2018.01584.
- [14]Crawford S E, Desselberger U. Lipid droplets form complexes with viroplasms and are crucial for rotavirus replication[J/OL]. Curr Opin Virol, 2016, 19:11-15.DOI:10.1016/j.coviro.2016.05.008.
- [15]Danthi P. Viruses and the diversity of cell death[J/OL].Annu Rev Virol, 2016, 3(1):533-553.DOI:10.1146/annurev-virology-110615-042435.
- [16]Mukherjee A, Patra U, Bhowmick R, Chawla-Sarkar M. Rotaviral nonstructural protein 4 triggers dynaminrelated protein 1-dependent mitochondrial fragmentation during infection[J/OL]. Cell Microbiol, 2018, 20(6):12831-12846.DOI:10.1111/cmi.12831.
- [17]Chattopadhyay S, Mukherjee A, Patra U, Bhowmick R, Basak T, Sengupta S, Chawla-Sarkar M. Tyrosine phosphorylation modulates mitochondrial chaperonin Hsp60 and delays rotavirus NSP4-mediated apoptotic signaling in host cells[J/OL]. Cell Microbiol, 2017, 19(3):12670-12686.DOI:10.1111/cmi.12670.
- [18]Chanda S, Nandi S, Chawla-Sarkar M. Rotavirusinduced miR-142-5p elicits proviral milieu by targeting non-canonical transforming growth factor beta signalling and apoptosis in cells[J/OL]. Cell Microbiol, 2016, 18(5):733-747.DOI:10.1111/cmi.12544.
- [19]Zhao W, Su J, Wang N, Zhao N, Su S. Expression profiling and bioinformatics analysis of CircRNA in Mice Brain Infected with Rabies Virus[J/OL]. Int J Mol Sci,2021, 22(12):6537-6554.DOI:10.3390/ijms22126537.
- [20]Cao Y, Zhang K, Liu L, Li W, Zhu B, Zhang S, Xu P, Liu W, Li J. Global transcriptome analysis of H5N1influenza virus-infected human cells[J/OL]. Hereditas,2019, 156:10-20.DOI:10.1186/s41065-019-0085-9.
- [21]李海敏,俞天奇,金玉兰,顾金燕,周继勇.伪狂犬病病毒Ⅱ型感染PK-15细胞的转录组学分析[J].农业生物技术学报,2021, 29(10):2008-2015.
- [22]李伯阳,赵艳玲,田玉玲,李慧莹,章青,李丹地,孙利伟,庞立丽,裴银辉,段招军.轮状病毒感染患者外周血单个核细胞的转录组学分析[J/OL].病毒学报,2022, 38(01):139-148. DOI:10.13242/j. cnki.bingduxuebao.003963.
- [23]Zou W Y, Blutt S E, Zeng X L, Chen M S, Lo Y H,Castillo-Azofeifa D, Klein O D, Shroyer N F,Donowitz M, Estes M K. Epithelial WNT ligands are essential drivers of intestinal stem cell activation[J/OL].Cell Rep, 2018, 22(4):1003-1015. DOI:10.1016/j.celrep.2017.12.093.
- [24]Crawford S E, Ramani S, Tate J E, Parashar U D,Svensson L, Hagbom M, Franco M A, Greenberg H B, O′Ryan M, Kang G, Desselberger U, Estes M K.Rotavirus infection[J/OL]. Nat Rev Dis Primers,2017, 3:17083:1-17.DOI:10.1038/nrdp.2017.83.
- [25]Kumar D, Shepherd F K, Springer N L, Mwangi W,Marthaler D G. Rotavirus infection in swine:genotypic diversity, immune responses, and role of gut microbiome in rotavirus immunity[J/OL]. Pathogens,2022, 11(10):1078-1098. DOI:10.3390/pathogens11101078.
- [26]Zhou Y, Qiao H, Yin N, Chen L, Xie Y, Wu J, Du J,Lin X, Wang Y, Liu Y, Yi S, Zhang G, Sun M, He Z, Li H. Immune and cytokine/chemokine responses of PBMCs in rotavirus-infected rhesus infants and their significance in viral pathogenesis[J/OL]. J Med Virol,2019, 91(8):1448-1469.DOI:10.1002/jmv.25460.
- [27]Villena J, Vizoso-Pinto M G, Kitazawa H. Intestinal innate antiviral immunity and immunobiotics:beneficial effects against rotavirus infection[J/OL]. Front Immunol, 2016, 7:563:1-10. DOI:10.3389/fimmu.2016.00563.
- [28]Criglar J M, Crawford S E, Zhao B, Smith H G, Stossi F, Estes M K. A genetically engineered rotavirus nsp2phosphorylation mutant impaired in viroplasm formation and replication shows an early interaction between vnsp2and cellular lipid droplets[J/OL]. J Virol, 2020, 94(15):972-992.DOI:10.1128/jvi.00972-20.
- [29]Mukhopadhyay U, Patra U, Chandra P, Saha P, Gope A, Dutta M, Chawla-Sarkar M. Rotavirus activates MLKL-mediated host cellular necroptosis concomitantly with apoptosis to facilitate dissemination of viral progeny[J/OL]. Mol Microbiol, 2022, 117(4):818-836.DOI:10.1111/mmi.14874.
- [30]Patterson A M, Watson A J M. Deciphering the complex signaling systems that regulate intestinal epithelial cell death processes and shedding[J/OL].Front Immunol, 2017, 8:841:1-7. DOI:10.3389/fimmu.2017.00841.
- [31]Jeong Y Y, Lee G Y, Yoo Y C. Bovine lactoferricin induces intestinal epithelial cell activation through phosphorylation of fak and paxillin and prevents rotavirus infection[J/OL]. J Microbiol Biotechnol, 2021, 31(8):1175-1182.DOI:10.4014/jmb.2106.06044.
- [32]Koch S. Extrinsic control of Wnt signaling in the intestine[J/OL]. Differentiation, 2017, 97:1-8.DOI:10.1016/j.diff.2017.08.003.
- [33]Tan S H, Barker N. Wnt Signaling in Adult Epithelial stem cells and cancer[J/OL]. Prog Mol Biol Transl Sci,2018, 153:21-79.DOI:10.1016/bs.pmbts.2017.11.017.
- [34]Wang Q, Zhou Y, Rychahou P, Fan T W, Lane A N,Weiss H L, Evers B M. Ketogenesis contributes to intestinal cell differentiation[J/OL]. Cell Death Differ,2017, 24(3):458-468.DOI:10.1038/cdd.2016.142.
- [35]Varga T, Czimmerer Z, Nagy L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation[J/OL].Biochim Biophys Acta, 2011, 1812(8):1007-1022.DOI:10.1016/j.bbadis.2011.02.014.
- [36]Kim J T, Li C, Weiss H L, Zhou Y, Liu C, Wang Q,Evers B M. Regulation of ketogenic enzyme HMGCS2by Wnt/β-catenin/PPARγ Pathway in intestinal cells[J/OL]. Cells, 2019, 8(9):1106-1124. DOI:10.3390/cells8091106.